A novel hierarchical framework for human action recognition
نویسندگان
چکیده
منابع مشابه
A hierarchical framework for object recognition
Object recognition in the presence of background clutter and distractors is a central problem both in neuroscience and in machine learning. However, the performance level of the models that are inspired by cortical mechanisms, including deep networks such as convolutional neural networks and deep belief networks, is shown to significantly decrease in the presence of noise and background objects...
متن کاملA Novel Approach for Human Action Recognition from Silhouette Images
In this paper, a novel human action recognition technique from video is presented. Any action of human is a combination of several micro action sequences performed by one or more body parts of the human. The proposed approach uses spatio-temporal body parts movement (STBPM) features extracted from foreground silhouette of the human objects. The newly proposed STBPM feature estimates the movemen...
متن کاملHuman Action Recognition with Hierarchical Growing Neural Gas Learning
We propose a novel biologically inspired framework for the recognition of human full-body actions. First, we extract body pose and motion features from depth map sequences. We then cluster pose-motion cues with a two-stream hierarchical architecture based on growing neural gas (GNG). Multi-cue trajectories are finally combined to provide prototypical action dynamics in the joint feature space. ...
متن کاملDiscriminative human action recognition in the learned hierarchical manifold space
In this paper, we propose a hierarchical discriminative approach for human action recognition. It consists of feature extraction with mutual motion pattern analysis and discriminative action modeling in the hierarchical manifold space. Hierarchical Gaussian Process Latent Variable Model (HGPLVM) is employed to learn the hierarchical manifold space in which motion patterns are extracted. A casca...
متن کاملA Framework for Hierarchical Perception-Action Learning Utilizing Fuzzy Reasoning
Perception-action (P-A) learning is an approach to cognitive system building that seeks to reduce the complexity associated with conventional environment-representation/action-planning approaches. Instead, actions are directly mapped onto the perceptual transitions that they bring about, eliminating the need for intermediate representation and significantly reducing training requirements. We he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2016
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2016.01.020